
System Analysis & Design

CSCI 2783

The Systems Development Life Cycle or SDLC
The Systems Development Life Cycle (SDLC) is a software

engineering framework that is used to describe the various

phases used to develop an information system. These phases

include planning, analysis, design, development, testing, and

implementation. SDLC environments describe the activities and

tools required to perform a particular process within the SDLC.

They are also defined as controlled points where software

engineers can carry out activities related to development, testing,

installation, and configuration. These environments are

associated with the different phases that make up the SDLC.

The Systems Development Life Cycle or SDLC

The main SDLC environments include:

• The analysis and design environment

• The development environment

• The common build environment

• The testing environment, which has two components:

✓ The systems integration testing environment

✓ The user acceptance testing environment

• The production environment

Analysis & Design Environment
The analysis and design environment is aligned to the planning

and analysis phases of the SDLC. In this environment, the main

processes that take place include carrying out an in-depth

examination of the current system and the proposed system. The

system architecture is also defined and includes developing the

design of the hardware, software, and network requirements for

the system. Within this environment, systems and business

analysts work closely with software engineers.

Development & Common Build Environment
The development environment is aligned to the development phase
of the SDLC. This is where processes related to software development
are carried out. The development environment contains a set of
different processes and tools for programming. These are used to
develop the final software.

The development environment can also be a physical space where
development takes place and where software engineers interact.
Another example of the development environment is the integrated
development environment (IDE). The IDE provides a platform where
tools and development processes are coordinated in order to provide
software engineers a convenient way of accessing the resources they
require during the development process.

Development & Common Build Environment

The common build environment is closely aligned to the

development phase of the SDLC. In this environment, software

engineers merge the work done in the development

environment. Within this environment, software engineers build

systems. These are used to automate the process of software

compilation.

Testing Environment
The testing environment is closely aligned to the testing phase of the

SDLC. The testing environment comprises the following components:

the System Integration Testing Environment and the User Acceptance

Testing Environment.

The system integration testing environment includes the testing of the

entire system being developed. This includes a complete test of the

modules making up the software. This environment controls

processes involved in assembling parts of the system in a manner that

is cost-effective and logical and then comprehensively checking the

manner in which the system executes. It involves testing all

functionalities of the system.

The Origin of Software
Software emerged in 1948 in England as more engineers and

developers sought to design systems that could address large

scale operations for companies. However, the theory of software

was credited much earlier to a mathematician, computer

scientist, and logician, Alan Turing, in 1935. Tom Kilburn, a

computer scientist, wrote the world’s first software piece for a

computer he had built with his friend Freddie Williams, called the

Manchester small scale experimental machine, aka Baby.

The Origin of Software
The software created by Tom was programmed to perform

mathematics based on code instruction and data. On 21st June

1948, at 11 am, Tom ran the first software piece at the University

of Manchester in England. It reportedly took 52 minutes for the

machine to compute the initial mathematical request, which was

to conjure the greatest divisor of 2 to the power of 18.

The Origin of Software
After this software emerged, numerous advancements followed,

such as;

• Punch cards used to program computers and denote

instructions.

• Fortran, a programming language, was published in 1957.

• Other distinctive programming languages developed over the

years, including BASIC, Pascal, Cobol, and C.

The Origin of Software (PCs)

Once personal computers launched in the 70s and 80s, software

improved dramatically. For instance, in 1977, the Apple 2

computer was released to the public with a popular app called

VisiCalc. VisiCalc was the first spreadsheet for PCs, and it was

very popular. Over time other businesses created their own PCS.

For instance, the IBM PC was launched in 1981. At this time,

software was primarily created with business functions in mind.

Popular applications, including AutoCAD, Microsoft Excel, and

Microsoft Word, launched in the mid-80s.

The Origin of Software (Mobile Phones)

The first mobile phone took place on 3rd April 1973. Later on, in

1993, IBM released the first smartphone to the public, and then

in 1996, the Personal Digital Assistant emerged in the market.

Other notable mobile phone releases include the Blackberry 850

devices in 1999 and 2007 when Apple released their first mobile

– the iPhone. At this point, mobile application software took the

world by storm.

The Origin of Software (Present)

Today, every business is using software to some degree. Be it a

small furniture restoration company using accounting software to

keep their books afloat. Or a gaming company is incorporating

poker software for their audience. Retail, finance, transportation,

healthcare, and so forth all require software to some extent.

The Origin of Software (Present)
Here are a few reasons why;

• Software can enhance productivity by completing arduous, time-
consuming, routine administrative duties and accounting tasks.

• Cyber security software is advantageous for companies with
important intel stored on their business devices. Enabling users to
detect and eliminate any threats that could jeopardize the
livelihood of their company.

• Spreadsheets like Microsoft Excel and OpenOffice enable
businesses to collect, record, edit, organize and put data into a
readable format.

The Origin of Software (Present)

Moreover, software’s total capacity is yet to be reached, with

operating systems experiencing continuous improvement in

writing software and other apps.

The Origin of Software (Future)

As such, with software penetrating almost every industry

imaginable, it’s expected that more operations will become

mobile-based.

Thus, anyone who has a new digital concept will likely source app

software development services to bring their idea to life.

Another burning question regarding software development today

is whether AI could eventually take over the role of software

engineers.

The Origin of Software (Future)

Another burning question regarding software development today is

whether AI could eventually take over the role of software engineers.

The answer so far is while more routine tasks will be passed over to

computers over the years. There will still be room for engineers to

implement solutions, research, and new software concepts.

“One machine can do the work of fifty ordinary men. No machine

can do the work of one extraordinary man.” – Elbert Hubbard

(Author)

The Origin of Software (Future)

Moreover, there won’t necessarily be a dip in need for

software developers, but a change in demand for experience

and qualifications in the following trending software services;
• Cloud-based services

• Voice software

• Blockchain technology

• Artificial intelligence

• Machine learning

• Virtual and augmented reality

• New programming languages

The Origin of Software (Future)

Today, software is often taken for granted by personal and

business users alike. Because as technology advances, our

expectations of devices rises.

And continuously improving software is paramount for

inventors and customers alike. To ensure demand for faster,

more powerful, intelligent software that can take care of the

intricate work or personal tasks people need to do can be

completed without little input on their behalf.

Managing the Information System
A critical success factor for effective time management

is timely communication for standards and expectations.

Setting milestones provides appropriate reference

points for the project manager and team members. The

most widely used tools for scheduling, monitoring, and

communicating time aspects of projects are the

Program Evaluation Review Technique (PERT) and the

Critical Path Method (CPM).

Managing the Information System

Potential for PERT / CPM
• Estimate minimum time required for competing the entire project.

• Identify critical activities that must be completed in time for the entire

project to be completed as scheduled.

• Show progress status for critical activities.

• Show progress status for noncritical activities.

• Estimate the length of time that these noncritical activities can be

delayed.

• Estimate the likelihood for completing the entire project on schedule.

Managing the Information System
Time is a resource if it is managed effectively; otherwise it

will be a constraint. Timely delivery of information

systems projects has been one of the biggest challenges

for information systems project managers. Managing time

effectively is therefore a critical component for project

success. Time management relates not only to the

anticipated planned activities but also to unexpected

events – last minute changes, personal issues, etc.

Managing the Information System

A successful project is the one that is on time, within

budget, and delivers what is expected. Project managers

should set the standard for a timely outcome by example.

If project managers cannot control their time, then they

will have difficulties controlling team members, and

consequently the entire project is likely to be late.

Managing the Information System

Project managers often work on tight deadlines and feel

they have no time to think about time and its effective

use. To be effective, a project manage must be organized

and prioritize work. Depending on work habits, this could

be done in different ways and may or may not be very

formal.

Managing the Information System

Questions to Ask when Assessing Your Time Management
• Do you spend a lot of time responding to email messages?

• Do you spend a lot of time returning calls?

• How often do you work overtime?

• How often do you miss social events?

• How often do you reschedule your appointments?

• How often do you feel you need a large block of time to finish a task?

• Do you have a gatekeeper for unexpected visitors who take up your time?

• Do you prioritize your work? Based on what?

• Do you plan your vacation?

Managing the Information System

Daily Activity Form

Managing the Information System

Sample Activity Form for Developing a Personal Web Page

Managing the Information System

Managers, including project managers, are said to spend

most of their time in meetings. Many managers would

argue that they attend too many meetings and most

meetings are too time-consuming. What is important is

not so much the number of meetings one attends or the

amount of time spent in meetings but what is

accomplished in relation to time spent.

Managing the Information System

Principles About Meeting Management

• Longer meetings do not necessarily produce better results

• The need for an agenda that is communicated to all

• The need for continued focus and control

• Opportunity for participation by all

• Summation of outcome and closure

	Slide 1: System Analysis & Design
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

